

Lecture 20:
Turing Machines

CS103CS103

Winter 2025Winter 2025

Part 1 of 3

What problems can we solve with a computer?

Regular
Languages CFLs

All Languages

Languages
recognizable by

any feasible
computing
machine

That same drawing, to scale.

All Languages

The Problem
● Finite automata accept precisely the

regular languages.
● We may need unbounded memory to

recognize context-free languages.
● e.g. { anbn | n ∈ ℕ } requires unbounded

counting.
● How do we model a computing device

that has unbounded memory?

A Brief History Lesson

Turing Machines
● In March 1936, Alan Turing

(aged 23!) published a paper
detailing the a-machine (for
automatic machine), an
automaton for computing on
real numbers.

● They’re now more popularly
referred to as Turing
machines in his honor.

● He also later made
contributions to
computational biology,
artificial intelligence,
cryptography, etc. Seriously,
Google this guy.

https://static01.nyt.com/images/2019/06/10/obituaries/10overlooked-alanturing-1/f86fc26c86b444c391fb412bb3dcec76-superJumbo.jpg?quality=75&auto=webp

8172 8182 5482 9 0
1413 6295 8535 9 7+
9585 4478 4028 8 7

111111

Key Idea: Even if you need huge amounts
of scratch space to perform a calculation,
at each point in the calculation you only
need access to a small amount of that

scratch space.

Turing Machines
● To provide his machines extra memory, Turing gave his

machines access to an infinite tape subdivided into a
number of tape cells.

● A Turing machine can only see one tape cell at a time,
the one pointed at by the tape head.

● The Turing machine can
● read the cell under the tape head,
● (possibly) change which symbol was written under the tape

head, and
● move its tape head to the left or to the right.

… a d i k d ai k …

Turing Machines
● Over the years, there have been many simplifications and

edits to Turing’s original automata.
● In practice, electronic computers are written in terms of

individual instructions rather than states and transitions.
● Turing’s original paper deals with computing individual real

numbers; we typically want to compute functions of inputs.
● What we’re going to present as “Turing machines” in this

class differ significantly from Turing’s original
description, while retaining the core essential ideas.
● (Our model is closer to Emil Post’s Formulation 1 and Hao

Wang’s Basic Machine B, for those of you who are curious.)
● If you’d like to learn more about Turing’s original version

of the Turing machine, come chat with me after class!

Turing Machines
● A TM is a series of instructions

that control a tape head as it
moves across an infinite tape.

● The tape begins with the input
string written somewhere,
surrounded by infinitely many
blank cells.
● Rule: The input string cannot

contain blank cells.
● The tape head begins above the

first character of the input. (If the
input is ε, the tape head points
somewhere on a blank tape.)

Start:

 If Blank Return True

 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a a b a b aa b …

Turing Machines
● We begin at the Start

label.
● Labels indicate different

sections of code. The
name Start is special
and means “begin here.”

● Labels have no effect
when executed. We just
move to the next line.

Start:

 If Blank Return True

 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a a b a b aa b …

Turing Machines
● A statement of the form

If symbol command
checks if the character
under the tape head is
symbol.

● If so, it executes
command.

● If not, nothing happens.

Start:

 If Blank Return True

 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a b a b aa b …a

Turing Machines
● A statement of the form

If symbol command
checks if the character
under the tape head is
symbol.

● If so, it executes
command.

● If not, nothing happens.

Start:

 If Blank Return True

 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a b a b aa b …a

Turing Machines
● The statement

Write symbol
writes symbol to the
cell under the tape
head.

● The symbol can
either be Blank or a
character in quotes.

Start:

 If Blank Return True

 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a a b a b aa b …

Turing Machines
● The statement

Write symbol
writes symbol to the
cell under the tape
head.

● The symbol can
either be Blank or a
character in quotes.

Start:

 If Blank Return True

 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a x b a b aa b …

Turing Machines
● The command

Move direction
moves the tape
head one step in
the indicated
direction (either
Left or Right).

Start:

 If Blank Return True

 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a x b a b aa b …

Turing Machines
● The command

Move direction
moves the tape
head one step in
the indicated
direction (either
Left or Right).

Start:

 If Blank Return True

 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a x b a b aa b …

Turing Machines
● A statement of the form
If Not symbol command
sees if the cell under
the tape head holds
symbol.

● If so, nothing happens.
● If not, it executes

command.

Start:

 If Blank Return True

 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a x b a b aa b …

Turing Machines
● The command

Goto label
jumps to the indicated
label.

● This program just has a
Start label, but most
interesting programs
have other labels
beyond this.

Start:

 If Blank Return True

 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a x x a b aa b …

Turing Machines
● A TM stops when executing

the
Return result

command.
● Here, result can be either
True or False.

● (If we “fall off” the bottom
of the program, the TM acts
as though it executes the
Return False command.)

Start:

 If Blank Return True 😃
 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a x x x x ax x …

Turing Machines
● This TM initially started up

with the string ababab on
its tape, so this means that
TM returns true on the
input ababab, not xxxxxx.

● An intuition for this: we
gave this program an
input. It therefore
returned true with respect
to that input, not whatever
internal data it generated
in making its decision.

Start:

 If Blank Return True 😃
 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a x x x x ax x …

Turing Machines
● To summarize, we only

have six commands:
● Move direction
● Write symbol
● Goto label
● Return result
● If symbol command
● If Not symbol command

● Despite their simplicitly,
TMs are surprisingly
powerful. The rest of this
lecture explores why.

Start:

 If Blank Return True

 If 'b' Return False

 Write 'x'

 Move Right

 If Not 'b' Return False

 Write 'x'

 Move Right

 Goto Start

… a x x x x ax x …

Your Turn!
● Draw what the tape

and tape head look like
when this TM finishes
running.

● Is the input bbaacc
accepted or rejected?

● More generally, what
does this TM do?

Start:

 If 'a' Goto Mirth

 If Blank Return False

 Move Right

 Goto Start

Mirth:

 If 'b' Return True

 If Blank Return False

 Move Right

… a b b a a ac c …

 Goto Mirth

Programming Turing Machines

Our First Challenge
● The language

{ anbn | n ∈ ℕ }
is a canonical example of a nonregular
language. It’s not possible to check if a
string is in this language given only finite
memory.

● Turing machines, however, are powerful
enough to do this. Let’s see how.

L = {anbn | n ∈ ℕ }

… a a a b b ab …a

… a a …

… a b a a …a

… a b a a a …b

A Recursive Approach
● We can process our string using this

recursive approach:
● The string ε is in L.
● The string awb is in L if and only if w is in L.
● Any string starting with b is not in L.
● Any string ending with a is not in L.

● All that’s left to do now is write a TM that
implements this.

Start:
 If Blank Return True 😃

 Write Blank

ZipRight:
 Move Right
 If Not Blank Goto ZipRight
 Move Left
 If Not 'b' Return False
 Write Blank

ZipLeft:
 Move Left
 If Not Blank Goto ZipLeft
 Move Right
 Goto Start

 If 'b' Return False

 … …

Time-Out for Announcements!

The State of Things
● Exam grading this weekend.
● Exam solutions and grades to be posted

early next week.
● Do not withdraw or change your

grading basis unless you have run some
projections about your raw score!

Problem Set 6 Graded
● Regrade requests run Friday through Wednesday.

0-34 35-39 40-44 45-49 50-54 55-59 60-65

75th Percentile: 61/ 65 (94%)
50th Percentile: 58 / 65 (89%)
25th Percentile: 54 / 65 (83%)

Back to CS103!

Our Next Challenge
● Let’s now take aim at this more general

language:
{ w ∈ {a, b}* | w has an equal number

 of a’s and b’s }
● This language is not regular (do you see why?)
● It is context-free, but it’s a bit tricky to write a

CFG for it. (See PS8!)
● Let’s see how to design a TM for it.

A Caveat

… a a a b b ab b a …a

A Caveat

… a a b ab b a …

How do we know that
this blank isn't one of

the infinitely many
blanks after our input

string?

One Solution

… a a a b b ab b a …a

One Solution

… a a a x b ab b a …x

Start:
 If 'a' Goto FoundA

 If Blank Return True

 Goto Start

FoundA:
 Write 'x'
LoopA:
 Move Right

 If 'x' Goto LoopA
 If Blank Return False
 Write 'x'
 Goto GoHome

 If 'a' Goto LoopA

 If 'b' Goto FoundB

 Move Right

GoHome:
 Move Left

 Move Right

FoundB:
 Write 'x'
LoopB:
 Move Right

 If 'x' Goto LoopB
 If Blank Return False
 Write 'x'
 Goto GoHome

 If 'b' Goto LoopB

 If Not Blank Goto GoHome

 Goto Start

… a a a …x

Another Idea
● We just built a TM for the language

{ w ∈ {a, b}* | w has the same number of
 a’s and b’s }.

● An observation: this would be a lot easier to test
for if all the a’s came before all the b’s.
● In fact, that would turn this into checking if the string

has the form anbn, which we already know how to do!
● Idea: Could we sort the characters of our input

string?

The Idea

… a a b a b ab …a

The Idea

… a a b ab …a b a

The Idea

… a a b ab …a a b

Exploring This Idea

Cool TM Tricks 2: Decimal Fibonacci

Summary for Today
● Turing machines are abstract computers

that issue commands to an infinite tape
subdivided into cells.

● Each step of the TM can move the tape
head, change what’s on the tape, or jump
to a different part of the program.

● TMs can be composed together to build
larger TMs out of smaller ones.

Next Time
● The Church-Turing Thesis

● How powerful are Turing machines?
● Decidability and Recognizability

● Two notions of “solving a problem.”

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 49
	Slide 51
	Slide 52

