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What problems can we solve with a computer?



  

Regular
Languages CFLs

All Languages

Languages 
recognizable by 

any feasible 
computing 
machine



  

That same drawing, to scale.

All Languages



  

The Problem
● Finite automata accept precisely the 

regular languages.
● We may need unbounded memory to 

recognize context-free languages.
● e.g. { anbn | n ∈ ℕ } requires unbounded 

counting.
● How do we model a computing device 

that has unbounded memory?



  

A Brief History Lesson



  

Turing Machines
● In March 1936, Alan Turing 

(aged 23!) published a paper 
detailing the a-machine (for 
automatic machine), an 
automaton for computing on 
real numbers.

● They’re now more popularly 
referred to as Turing 
machines in his honor.

● He also later made 
contributions to 
computational biology, 
artificial intelligence, 
cryptography, etc. Seriously, 
Google this guy.

https://static01.nyt.com/images/2019/06/10/obituaries/10overlooked-alanturing-1/f86fc26c86b444c391fb412bb3dcec76-superJumbo.jpg?quality=75&auto=webp
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Key Idea: Even if you need huge amounts 
of scratch space to perform a calculation, 
at each point in the calculation you only 
need access to a small amount of that 

scratch space.



  

Turing Machines
● To provide his machines extra memory, Turing gave his 

machines access to an infinite tape subdivided into a 
number of tape cells.

● A Turing machine can only see one tape cell at a time, 
the one pointed at by the tape head.

● The Turing machine can
● read the cell under the tape head,
● (possibly) change which symbol was written under the tape 

head, and
● move its tape head to the left or to the right.

… a d i k d ai k …



  

Turing Machines
● Over the years, there have been many simplifications and 

edits to Turing’s original automata.
● In practice, electronic computers are written in terms of 

individual instructions rather than states and transitions.
● Turing’s original paper deals with computing individual real 

numbers; we typically want to compute functions of inputs.
● What we’re going to present as “Turing machines” in this 

class differ significantly from Turing’s original 
description, while retaining the core essential ideas.
● (Our model is closer to Emil Post’s Formulation 1 and Hao 

Wang’s Basic Machine B, for those of you who are curious.)
● If you’d like to learn more about Turing’s original version 

of the Turing machine, come chat with me after class!



  

Turing Machines
● A TM is a series of instructions 

that control a tape head as it 
moves across an infinite tape.

● The tape begins with the input 
string written somewhere, 
surrounded by infinitely many 
blank cells.
● Rule: The input string cannot 

contain blank cells.
● The tape head begins above the 

first character of the input. (If the 
input is ε, the tape head points 
somewhere on a blank tape.)

Start:

  If Blank Return True

  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a a b a b aa b …



  

Turing Machines
● We begin at the Start 

label.
● Labels indicate different 

sections of code. The 
name Start is special 
and means “begin here.”

● Labels have no effect 
when executed. We just 
move to the next line.

Start:

  If Blank Return True

  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a a b a b aa b …



  

Turing Machines
● A statement of the form

If symbol command
checks if the character 
under the tape head is 
symbol.

● If so, it executes 
command.

● If not, nothing happens.

Start:

  If Blank Return True

  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a b a b aa b …a



  

Turing Machines
● A statement of the form

If symbol command
checks if the character 
under the tape head is 
symbol.

● If so, it executes 
command.

● If not, nothing happens.

Start:

  If Blank Return True

  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a b a b aa b …a



  

Turing Machines
● The statement

Write symbol 
writes symbol to the 
cell under the tape 
head.

● The symbol can 
either be Blank or a 
character in quotes.

Start:

  If Blank Return True

  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a a b a b aa b …



  

Turing Machines
● The statement

Write symbol 
writes symbol to the 
cell under the tape 
head.

● The symbol can 
either be Blank or a 
character in quotes.

Start:

  If Blank Return True

  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a x b a b aa b …



  

Turing Machines
● The command

Move direction 
moves the tape 
head one step in 
the indicated 
direction (either 
Left or Right).

Start:

  If Blank Return True

  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a x b a b aa b …



  

Turing Machines
● The command

Move direction 
moves the tape 
head one step in 
the indicated 
direction (either 
Left or Right).

Start:

  If Blank Return True

  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a x b a b aa b …



  

Turing Machines
● A statement of the form
If Not symbol command
sees if the cell under 
the tape head holds 
symbol.

● If so, nothing happens.
● If not, it executes 

command.

Start:

  If Blank Return True

  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a x b a b aa b …



  

Turing Machines
● The command

Goto label
jumps to the indicated 
label.

● This program just has a 
Start label, but most 
interesting programs 
have other labels 
beyond this.

Start:

  If Blank Return True

  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a x x a b aa b …



  

Turing Machines
● A TM stops when executing 

the
Return result

command.
● Here, result can be either 
True or False.

● (If we “fall off” the bottom 
of the program, the TM acts 
as though it executes the 
Return False command.)

Start:

  If Blank Return True 😃
  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a x x x x ax x …



  

Turing Machines
● This TM initially started up 

with the string ababab on 
its tape, so this means that 
TM returns true on the 
input ababab, not xxxxxx.

● An intuition for this: we 
gave this program an 
input. It therefore 
returned true with respect 
to that input, not whatever 
internal data it generated 
in making its decision.

Start:

  If Blank Return True 😃
  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a x x x x ax x …



  

Turing Machines
● To summarize, we only 

have six commands:
● Move direction
● Write symbol
● Goto label
● Return result
● If symbol command
● If Not symbol command

● Despite their simplicitly, 
TMs are surprisingly 
powerful. The rest of this 
lecture explores why.

Start:

  If Blank Return True

  If 'b' Return False

  Write 'x'

  Move Right

  If Not 'b' Return False

  Write 'x'

  Move Right

  Goto Start

… a x x x x ax x …



  

Your Turn!
● Draw what the tape 

and tape head look like 
when this TM finishes 
running.

● Is the input bbaacc 
accepted or rejected?

● More generally, what 
does this TM do?

Start:

  If 'a' Goto Mirth

  If Blank Return False

  Move Right

  Goto Start

Mirth:

  If 'b' Return True

  If Blank Return False

  Move Right

… a b b a a ac c …

  Goto Mirth



  

Programming Turing Machines



  

Our First Challenge
● The language

{ anbn | n ∈ ℕ }
is a canonical example of a nonregular 
language. It’s not possible to check if a 
string is in this language given only finite 
memory.

● Turing machines, however, are powerful 
enough to do this. Let’s see how.



  

L = {anbn | n ∈ ℕ } 

… a a a b b ab …a

… a a …

… a b a a …a

… a b a a a …b



  

A Recursive Approach
● We can process our string using this 

recursive approach:
● The string ε is in L.
● The string awb is in L if and only if w is in L.
● Any string starting with b is not in L.
● Any string ending with a is not in L.

● All that’s left to do now is write a TM that 
implements this.



  

Start:
  If Blank Return True 😃

  Write Blank

ZipRight:
  Move Right
  If Not Blank Goto ZipRight
  Move Left
  If Not 'b' Return False
  Write Blank

ZipLeft:
  Move Left
  If Not Blank Goto ZipLeft
  Move Right
  Goto Start

  If 'b' Return False

 … …



  

Time-Out for Announcements!



  

The State of Things
● Exam grading this weekend.
● Exam solutions and grades to be posted 

early next week.
● Do not withdraw or change your 

grading basis unless you have run some 
projections about your raw score!



  

Problem Set 6 Graded
● Regrade requests run Friday through Wednesday.

0-34 35-39 40-44 45-49 50-54 55-59 60-65

75th Percentile: 61/ 65 (94%)
50th Percentile: 58 / 65 (89%)
25th Percentile: 54 / 65 (83%)



  

Back to CS103!



  

Our Next Challenge
● Let’s now take aim at this more general 

language:
{ w ∈ {a, b}* | w has an equal number

          of a’s and b’s }
● This language is not regular (do you see why?)
● It is context-free, but it’s a bit tricky to write a 

CFG for it. (See PS8!)
● Let’s see how to design a TM for it.



  

A Caveat

… a a a b b ab b a …a



  

A Caveat

… a  a b ab b a … 

How do we know that 
this blank isn't one of 

the infinitely many 
blanks after our input 

string?



  

One Solution

… a a a b b ab b a …a



  

One Solution

… a a a x b ab b a …x



  

Start:
  If 'a' Goto FoundA

  If Blank Return True

  Goto Start

FoundA:
  Write 'x'
LoopA:
  Move Right

  If 'x' Goto LoopA
  If Blank Return False
  Write 'x'
  Goto GoHome

  If 'a' Goto LoopA

  If 'b' Goto FoundB

  Move Right

GoHome:
  Move Left

  Move Right

FoundB:
  Write 'x'
LoopB:
  Move Right

  If 'x' Goto LoopB
  If Blank Return False
  Write 'x'
  Goto GoHome

  If 'b' Goto LoopB

  If Not Blank Goto GoHome

  Goto Start

… a a a …x



  

Another Idea
● We just built a TM for the language

{ w ∈ {a, b}* | w has the same number of
   a’s and b’s }.

● An observation: this would be a lot easier to test 
for if all the a’s came before all the b’s.
● In fact, that would turn this into checking if the string 

has the form anbn, which we already know how to do!
● Idea: Could we sort the characters of our input 

string?



  

The Idea

… a a b a b ab …a



  

The Idea

… a a b ab …a b a



  

The Idea

… a a b ab …a a b



  

Exploring This Idea



  

Cool TM Tricks 2: Decimal Fibonacci



  

Summary for Today
● Turing machines are abstract computers 

that issue commands to an infinite tape 
subdivided into cells.

● Each step of the TM can move the tape 
head, change what’s on the tape, or jump 
to a different part of the program.

● TMs can be composed together to build 
larger TMs out of smaller ones.



  

Next Time
● The Church-Turing Thesis

● How powerful are Turing machines?
● Decidability and Recognizability

● Two notions of “solving a problem.”
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